skip to main content


Search for: All records

Creators/Authors contains: "Bahramian, Arash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The globular cluster ultraluminous X-ray source, RZ 2109, is a complex and unique system that has been detected at X-ray, ultraviolet, and optical wavelengths. Based on almost 20 yr of Chandra and XMM–Newton observations, the X-ray luminosity exhibits order of magnitude variability, with the peak flux lasting on the order of a few hours. We perform robust time series analysis on the archival X-ray observations and find that this variability is periodic on a time-scale of 1.3 ± 0.04 d. The source also demonstrates broad [O iii] λ5007 emission, which has been observed since 2004, suggesting a white dwarf donor and therefore an ultra-compact X-ray binary. We present new spectra from 2020 and 2022, marking 18 yr of observed [O iii] emission from this source. Meanwhile, we find that the globular cluster counterpart is unusually bright in the NUV/UVW2 band. Finally, we discuss RZ 2109 in the context of the eccentric Kozai–Lidov mechanism and show that the observed 1.3 d periodicity can be used to place constraints on the tertiary configuration, ranging from 20 min (for a 0.1 M⊙ companion) to approximately 95 min (for a 1 M⊙ companion), if the eccentric Kozai–Lidov mechanism is at the origin of the periodic variability.

     
    more » « less
  2. ABSTRACT

    Understanding the natal kicks received by neutron stars (NSs) during formation is a critical component of modelling the evolution of massive binaries. Natal kicks are an integral input parameter for population synthesis codes, and have implications for the formation of double NS systems and their subsequent merger rates. However, many of the standard observational kick distributions that are used are obtained from samples created only from isolated NSs. Kick distributions derived in this way overestimate the intrinsic NS kick distribution. For NSs in binaries, we can only directly estimate the effect of the natal kick on the binary system, instead of the natal kick received by the NS itself. Here, for the first time, we present a binary kick distribution for NSs with low-mass companions. We compile a catalogue of 145 NSs in low-mass binaries with the best available constraints on proper motion, distance, and systemic radial velocity. For each binary, we use a three-dimensional approach to estimate its binary kick. We discuss the implications of these kicks on system formation, and provide a parametric model for the overall binary kick distribution, for use in future theoretical modelling work. We compare our results with other work on isolated NSs and NSs in binaries, finding that the NS kick distributions fit using only isolated pulsars underestimate the fraction of NSs that receive low kicks. We discuss the implications of our results on modelling double NS systems, and provide suggestions on how to use our results in future theoretical works.

     
    more » « less
  3. Abstract

    The conditions under which accreting neutron stars launch radio-emitting jets and/or outflows are still poorly understood. The ultracompact X-ray binary X1850–087, located in the globular cluster NGC 6712, is a persistent atoll-type X-ray source that has previously shown unusual radio-continuum variability. Here we present the results of a pilot radio-monitoring program of X1850–087 undertaken with the Karl G. Jansky Very Large Array, with simultaneous or quasi-simultaneous Swift/XRT data obtained at each epoch. The binary is clearly detected in the radio in two of the six new epochs. When combined with previous data, these results suggest that X1850–087 shows radio emission at a slightly elevated hard-state X-ray luminosity ofLX≳ 2 × 1036erg s−1, but no radio emission in its baseline hard stateLX∼ 1036erg s−1. No clear X-ray spectral changes are associated with this factor of ≳10 radio variability. At all detected epochs, X1850–087 has a flat to inverted radio spectral index, more consistent with the partially absorbed optically thick synchrotron of a compact jet rather than the evolving optically thick to thin emission associated with transient expanding synchrotron-emitting ejecta. If the radio emission in X1850–087 is indeed due to a compact jet, then it is plausibly being launched and quenched in the hard state on timescales as short as a few days. Future radio monitoring of X1850–087 could help elucidate the conditions under which compact jets are produced around hard-state accreting neutron stars.

     
    more » « less
  4. ABSTRACT

    NGC 4472 is home to five ultraluminous X-ray sources hosted by globular clusters. These sources have been suggested as good black hole candidates in extragalactic globular clusters—a highly sought after population that may provide observational information regarding the progenitors of merging black hole binaries. In this body of work, we present X-ray and optical follow-up to one of these sources, CXOUJ1229410+075744 (GCU1). We find no evidence of [OIII] optical emission in GCU1 which indicates a lack of significant evidence for super-Eddington outflows, unlike what is seen in a handful of ULXs in extragalactic GCs. X-ray monitoring from 2019 to 2021 shows no detected X-ray emission above a few × 1038 erg/s. Comparisons of the multiwavelength properties to disc-dominated, near Eddington Galactic black hole low-mass X-ray binaries (GRS 1915+105 and XTEJ1817-330) suggests that GCU1 may show similar behaviour to GRS 1915+105 in terms of X-ray variability and similar relationships between LX and kT, with GCU1 showing maximum X-ray luminosities on order of higher magnitude.

     
    more » « less
  5. null (Ed.)
  6. ABSTRACT

    Radio continuum observations offer a new window on compact objects in globular clusters compared to typical X-ray or optical studies. As part of the MAVERIC survey, we have used the Australia Telescope Compact Array to carry out a deep (median central noise level ≈4 $\mu$Jy beam-1) radio continuum survey of 26 southern globular clusters at central frequencies of 5.5 and 9.0 GHz. This paper presents a catalogue of 1285 radio continuum sources in the fields of these 26 clusters. Considering the surface density of background sources, we find significant evidence for a population of radio sources in seven of the 26 clusters, and also identify at least 11 previously known compact objects (six pulsars and five X-ray binaries). While the overall density of radio continuum sources with 7.25-GHz flux densities ≳ 20 $\mu$Jy in typical globular clusters is relatively low, the survey has already led to the discovery of several exciting compact binaries, including a candidate ultracompact black hole X-ray binary in 47 Tuc. Many of the unclassified radio sources near the centres of the clusters are likely to be true cluster sources, and multiwavelength follow-up will be necessary to classify these objects and better understand the demographics of accreting compact binaries in globular clusters.

     
    more » « less
  7. Abstract

    We report the discovery of 1RXH J082623.6−505741, a 10.4 hr orbital period compact binary. Modeling extensive optical photometry and spectroscopy reveals a ∼0.4MK-type secondary transferring mass through a low-state accretion disk to a nonmagnetic ∼0.8Mwhite dwarf. The secondary is overluminous for its mass and dominates the optical spectra at all epochs and must be evolved to fill its Roche Lobe at this orbital period. The X-ray luminosityLX∼ 1–2 × 1032erg s−1derived from both new XMM-Newton and archival observations, although high compared to most CVs, still only requires a modest accretion rate onto the white dwarf ofṀ∼ 3 × 10−11to 3 × 10−10Myr−1, lower than expected for a cataclysmic variable with an evolved secondary. No dwarf nova outbursts have yet been observed from the system, consistent with the low derived mass-transfer rate. Several other cataclysmic variables with similar orbital periods also show unexpectedly low mass-transfer rates, even though selection effects disfavor the discovery of binaries with these properties. This suggests the abundance and evolutionary state of long-period, low mass-transfer rate cataclysmic variables are worthy of additional attention.

     
    more » « less
  8. ABSTRACT

    The Galactic globular cluster (GC) NGC 3201 is the first Galactic GC observed to host dynamically confirmed stellar-mass black holes (BHs), containing two confirmed and one candidate BH. This result indicates that GCs can retain BHs, which has important implications for GC evolution. NGC 3201 has been observed as part of the MAVERIC survey of Galactic GCs. We use these data to confirm that there is no radio or X-ray detection of the three BHs, and present the first radio and X-ray limits on these sources. These limits indicate that any accretion present is at an extremely low rate and may be extremely inefficient. In particular, for the system ACS ID #21859, by assuming the system is tidally locked and any accretion is through the capture of the companion’s winds, we constrain the radiative efficiency of any accretion to ≲ 1.5 × 10−5. We also combine the radio and X-ray source catalogues from the MAVERIC survey with the existing MUSE spectroscopic surveys and the HUGS catalogue of NGC 3201 to provide a catalogue of 42 multiwavelength sources in this cluster. We identify a new red straggler source with X-ray emission, and investigate the multiwavelength properties of the sub-subgiant population in the cluster.

     
    more » « less
  9. null (Ed.)
    ABSTRACT Transitional millisecond pulsars are millisecond pulsars that switch between a rotation-powered millisecond pulsar state and an accretion-powered X-ray binary state, and are thought to be an evolutionary stage between neutron star low-mass X-ray binaries and millisecond pulsars. So far, only three confirmed systems have been identified in addition to a handful of candidates. We present the results of a multiwavelength study of the low-mass X-ray binary NGC 6652B in the globular cluster NGC 6652, including simultaneous radio and X-ray observations taken by the Karl G. Jansky Very Large Array and the Chandra X-ray Observatory, and optical spectroscopy and photometry. This source is the second brightest X-ray source in NGC 6652 ($L_{\textrm {X}}\sim 1.8 \times 10^{34}{\, \mathrm{erg\, s}^{-1}}$) and is known to be variable. We observe several X-ray flares over the duration of our X-ray observations, in addition to persistent radio emission and occasional radio flares. Simultaneous radio and X-ray data show no clear evidence of anticorrelated variability. Optical spectra of NGC 6652B indicate variable, broad H α emission that transitions from double-peaked emission to absorption over a time-scale of hours. We consider a variety of possible explanations for the source behaviour, and conclude that based on the radio and X-ray luminosities, short time-scale variability and X-ray flaring, and optical spectra, NGC 6652B is best explained as a transitional millisecond pulsar candidate that displays prolonged X-ray flaring behaviour. However, this could only be confirmed with observations of a change to the rotation-powered millisecond pulsar state. 
    more » « less